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Abstract In this paper an optimal-control approach for thermal-stress reduction inside a Czochralski-
grown single crystal is presented. Using the lateral heat flux as a control variable, an optimal-control
formulation for minimizing thermal stress with a given crystal shape is derived. Since the thermal stress is
also affected by the lateral shape of crystals during growth, the level of the stress can be reduced by grow-
ing crystals into a suitable shape. Using the lateral shape as a control variable, a similar optimal-control
formulation for stress reduction is derived. In both cases, the von Mises stress is used as an objective
function for the constrained optimization problem. Euler–Lagrange equations are derived using the calcu-
lus of variations and Lagrange multipliers. Various stress-reduction strategies are explored by solving the
Euler–Lagrange equations numerically.

Keywords Calculus of variations · Crystal · Czochralski technique · Optimal control · von Mises stress

1 Introduction

The Czochralski (Cz) technique is one of the most common methods for growing single semiconductor
crystals. The quality of Cz-grown crystals is affected greatly by crystalline defects formed during the growth
process. It is well-known that defect density is directly related to the thermal stress caused by tempera-
ture variation inside the crystal [1, 2]. Therefore, it is important to find a systematical way to control the
temperature variation during growth.

Several researchers have utilized optimal-control approaches to find favorable growth conditions with
properly chosen objective functions for growing cylindrical silicon crystals with constant radii. For example,
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Bornside et al. [1] used the von Mises stress as a measure of thermal stress to find optimum growth condi-
tions and system configurations for dislocation-free Cz-grown silicon crystals. They applied an integrated
numerical-analysis model to search for optimal growth conditions. Using a carefully selected target tem-
perature distribution, Müller [3] showed that the optimum growth conditions for the silicon Czochralski
process can be found by optimizing the geometry of hot-zone heat shields and cooling devices. Jeong and
Kang [4] obtained optimal conditions by using the crystal-surface temperature distribution as an objective
function. All of the above studies assume cylindrical crystals and none has discussed the effect of crystal
lateral shape on the thermal-stress distribution.

By comparison, much less attention has been paid to compound crystal growth where controlling the
appearance of crystalline defects is more difficult. Care must be taken to control the lateral shape of the
crystal, as well as the thermal environment. It has been shown that the lateral shape needs to be controlled
carefully to avoid the appearance of excessive defects [5, 6]. This is mainly due to their low resistance
to resolved shear stress which is responsible for causing crystalline defects [6, 7]. In practice, “magic
shapes” are obtained by trial-and-error, based on the experience of the grower [7]. The main objective
of this paper is to investigate stress-reduction strategies using a more systematical approach. We will set
up an optimal-control approach which searches for favorable conditions automatically, by exploring the
inter-play between thermal environment (lateral heat flux) and crystal shape.

Following [5], we derive an explicit formula for the von Mises stress and use it as a primary measure to
set up a constrained-optimization problem within the framework of optimal control. In the first approach,
we use the lateral heat flux as a control variable while the shape of the crystal is fixed, normally a cone. In
the second approach, the crystal radius is used as a control variable while the lateral heat flux is assumed
to be given. This two-step approach is not a mathematical necessity since a combined approach with two
control variables (heat flux and radius) can be attempted and the mathematical setup is almost identical. It
is adopted from a practical point of view since a complete control of the lateral heat flux may not be achiev-
able. A more common strategy is to partially control the lateral heat flux, e.g. by using a heat shields, while
adjusting the withdrawal rate and heater-power supply so that the crystal grows into a desirable shape.

While a full numerical approach using stress as a objective function [1] provides an accurate control
over the stress level, it is normally computationally intensive due to the iterative nature of search algo-
rithms during minimization. Furthermore, the results tend to be problem-specific, which may not be readily
applicable to other growth processes with different setups. Using temperature as a control target is compu-
tationally more efficient as demonstrated in [3, 4, 8–10]. However, the control of the thermal stress is not
directly imposed unless a priori knowledge of the growth process is available. In general, the relationship
between temperature and stress is not readily available for a complex growth process such as Cz growth.

In this paper, we use an alternative approach by utilizing mathematical models to predict the
temperature–stress relationship, under proper simplifications. In [5], a semi-analytical thermal-stress model
is obtained using a perturbation approach with the Biot number (the non-dimensional heat flux through
the lateral crystal surface) as a small parameter, similar to previous work [11–15]. In this study, we extend
the model in [5] to allow for a variable heat flux between the lateral crystal surface and the ambient gas in
the growth chamber. In principle, the lateral heat flux to the ambient gas can only be determined by solving
the coupled heat-transfer problem involving the crystal, melt, gas, the configuration and heat supply of
the grower. However, it can be altered or controlled using devices such as heat shields [3]. Therefore, it
is reasonable to treat the lateral heat flux as a control variable in the optimization process. The shape of
a Cz-grown crystal is determined by the motion of the triple-phase point, which can be controlled by the
heater power supply and extracting rate. We can use it as another control variable. In practice, the dynamics
of the triple point may be important due to stability of its radial motion [16, Chapter 2] . However, this
effect can be minimized by using a feedback control device [8].

To keep our problem manageable, we have decoupled the melt as in [5]. We assume that the heat flux
from the melt is uniform in the radial direction, based on the observation that the crystal–melt interface is
almost flat for Cz-grown InSb crystals [7]. In reality, the heat flux at the interface is influenced by the melt
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flow inside the crucible and is controlled indirectly by the heater. Additional control may be realized by
using electromagnetic fields to alter the melt-flow pattern and its stability [17].

The rest of the paper is organized as follows. In Sect. 2, we present a semi-analytical model for the (von
Mises) thermal stress and the setup of the optimal-control problems. In Sect. 3, we introduce a variational
formulation and the Euler–Lagrange equations are derived using the calculus of variations, Lagrange
multipliers and penalty functions. Numerical results and discussions are presented in Sect. 4 and we
conclude with a short discussion in Sect. 5.

2 Problem description

The problem setup and the derivations of the asymptotic solutions for temperature and thermal stress
are similar to those in [5]. For completeness, however, we will briefly describe the model and present the
temperature and stress solutions before setting up our optimal-control problems. For a detailed descrip-
tion of the model and perturbation solution of the temperature, we refer the interested reader to [5] and
references therein.

2.1 A semi-analytical model

Following [5], we assume that the crystal is axis-symmetric and the coordinate system is fixed to the top
of the growing crystal at z = 0, the final length of the crystal is denoted by L and the crystal radius is
denoted by R(z). The growth starts with a seed crystal with a radius of order R0 = 5 × 10−3 m and length
Z0 = 3×10−2 m. Figure 1 illustrates the geometry of a typical crystal. Within the crystal �, the temperature
T(x, t) satisfies the heat equation

ρscs
∂T
∂t

= ks∇2T, x ∈ �, t > 0, (1)

where ρs, cs and ks are the density, specific heat and thermal conductivity of the crystal (solid phase),
respectively. The lateral surface of the crystal is denoted by �g. The temperature boundary condition at
the lateral surface is given as

− ks
∂T
∂n

= hgs(T − Tg) + rc(T4 − T4
g ), x ∈ �g. (2)

where hgs and rc are the heat-transfer coefficients at the lateral surface due to convective cooling by the gas
and radiative heat loss, respectively and Tg is the ambient gas temperature. Alternatively, we can model
both convective and radiative effects through a simple Newtonian cooling law:

− ks
∂T
∂n

= hgs(T − Tg), x ∈ �g. (3)

Here we assume that the heat-transfer coefficient, hgs, incorporates both convective and radiative heat
transfer (via linearization). At the top of the crystal we invoke a Newtonian cooling law

ks
∂T
∂z

= hch(T − Tch), z = 0, (4)

in the case that the radius at z = 0 is assumed to be non-zero. Here hch represents the heat-transfer
coefficient for the seed-chuck connection and Tch is the chuck temperature.

The crystal–melt interface is denoted by �S where T = Tm (melting temperature). The solidus isotherm
is thus implicitly defined by the temperature field. Explicitly, we denote the solidus isotherm by

z − S(x, t) = 0, x ∈ �S. (5)



4 J Eng Math (2007) 59:1–23

Fig. 1 A typical crystal at some time t during a growth run
with a newly solidified portion at z = S(x, t) [5]

Fig. 2 Schematic diagram of the meniscus z = ζ(r) with
capillary height ζ0 [5]

The motion of the solidus isotherm is governed by the Stefan condition

ρsLh
∣
∣�vn

∣
∣ = ks

∂T
∂n

∣
∣
∣
∣
z→S−

− ql,n, (6)

where |�vn| is the speed at which the interface moves in the direction of the outward unit normal n, Lh is
the latent heat and ql,n is the heat flux from the melt normal to the interface.

The crystal radius is determined by the motion of the melt–solid–gas triple point, which is given by

∂R
∂t

∣
∣
∣
∣
z=S

= tan(θ − θc)
∂S
∂t

∣
∣
∣
∣
r=R

, (7)

where θc is the contact angle formed by the wetting fluid (melt) and the crystal and θ is the angle formed
by the meniscus with the vertical z-axis.

For the size of the crystals under consideration here, the effect of the surface tension in the azimuthal
direction can be neglected. Furthermore, if we disregard the dynamic effect of the melt flow, the shape of
the meniscus is determined by the surface tension through the Laplace–Young equation and the capillary
height ζ0 at the triple junction is approximately [18]

ζ0 =
√

α (1 − sin θ), (8)

where α = 2σ/ρlg, σ the surface-tension coefficient, ρl the density of melt, and g the gravitational constant.
Figure 2 shows the schematic diagram of the meniscus. From mass conservation, the change of the capillary
height ζ0 at the triple junction is defined by

dζ0

dt
= vp + vm − ∂S

∂t
, (9)

where vp is the pulling rate and vm is the rate at which the melt/gas surface drops, which is given by

vm = ρsR2

ρlR2
c

∂S
∂t

,

where Rc is the radius of the crucible. Thus, the meniscus shape is determined by its height, which is
controlled by the heat fluxes and crystal-extraction (pulling) rate.
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2.1.1 Asymptotic solution

Define the Biot number by

ε = h̄gsR

ks
,

where h̄gs is the mean heat-transfer coefficient defined by

h̄gs = 1
L

∫ L

0
hgs(z) dz,

where L is the final length of the crystal.
In the same spirit as in [5], we now non-dimensionalize the equation and boundary conditions using the

following scalings

r = Rr̂, ε1/2z = Rẑ, R(z) = RR̂(ẑ), ε1/2S(r, t) = RŜ(r̂, t̂),

T = Tg + 
T�, 
T = Tm − Tg, t = STR
2
ρscs

ksε
t̂, ST = Lh

cs
T
.

Here variables with hats ( ˆ ) are non-dimensional. In the following, the hats will be dropped for brevity.
The non-dimensional equation and boundary conditions are

ε

ST
�t = 1

r
(r�r)r + ε�zz, x ∈ �, t > 0, (10)

−�r + ε�zR′(z) = ε
[

1 + ε(R′(z))2]1/2
(β� + f (�)) , x ∈ �g,

� = 1, x ∈ �S,
�z = δ0(� − �ch), z = 0,

(11)

where β(z) = hgs(z)/h̄gs, f (�) = rc/h̄gs

(


T3�4 + 4Tg
T2�3 + 6T2
g
T�2 + 4T3

g�
)

andδ0 = ε1/2hch/h̄gs.

The solidus advances according to the Stefan condition (6) which, in non-dimensional coordinates, becomes

�z − 1
ε

Sr�r = (γ + St) , γ = qlR

ε1/2ks
T
, (12)

where ql and γ are the dimensional and dimensionless heat fluxes in the liquid across the crystal/
melt interface in the axial direction. As discussed in [5], we assume that the solidification is driven by
the heat loss from the lateral crystal surface and the rate of solidification defines the relevant time scale.
Equation 12 simply states that the motion of the interface is determined by the heat conduction in the
solid as well as in the melt. After the rescaling, the heat conduction in the crystal is an order-one quantity.
Therefore, the rescaled heat flux from the melt γ must be of order one at most.

To find an asymptotic solution for the temperature, we expand both � and S in terms of ε as in [5].
Equations 10 and 11 suggest that the temperature � is independent of r to leading order. Consequently, the
crystal/melt interface S is also independent of r to leading order. Based on these observations, we expand
both � and S as follows:

� ∼ �0(z, t) + ε�1(r, z, t) + ε2�2(r, z, t) + · · · ,
S ∼ S0(t) + εS1(r, t) + ε2S2(r, t) + · · · .

(13)

If we substitute the expansion in the scaled model (10) and (11), collect the terms at the zeroth and first
order of ε, and apply the solvability conditions, we can derive the equations for the leading- and higher-
order solutions. The detailed derivations can be found in [5, 19]. A similar and more detailed asymptotic
analysis for cylindrical crystals can be found in [11, 12, 15].
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The zeroth-order temperature solution satisfies
1

ST
�0,t = �0,zz + 2

R

[

R′�0,z − β�0 − f (�0)
]

, 0 < z < S0(t), t > 0, (14a)

�0,z = δ0(�0 − �ch), z = 0, (14b)

�0 = 1, z = S0(t) (14c)

with an initial condition �0(z, 0) = g(z) ≤ 1 compatible with the boundary conditions.
The advance of S0(t) is coupled to the thermal gradients via

γ + S0,t = �0,z
∣
∣
z=S0(t)

, (15)

where S0(0) = Z0.
Since there is a one-to-one relationship between growth time t and the size of the crystal (given by S0),

we use S0 as the main variable, instead of t. In addition, as the lateral size of the crystal is determined by
the motion of the triple junction, which can be controlled by the pulling rate and thermal flux from the
melt, we will work with the crystal radius directly. In some of the computations reported in this study, we
have used the non-dimensional version of Eq. 7 for the radial motion of the triple junction where the value
of θ is given by (8).

2.1.2 Thermal stress

Based on the plane-strain assumption, the thermal stress can be obtained as

σrr = 1
4
σ

(

R(z)2 − r2
)

, σθθ = 1
4
σ

(

R(z)2 − 3r2
)

, σzz = 1
2
σ

(

R(z)2 − 2r2
)

, (16)

where σ = ε�1
1(z, t), �1

1(z, t) = 1
2R(z)

[R′(z)�0,z(z, t) − β(z)�0(z, t) − f (�0(z, t))]. The von Mises stress is

σVM = 1√
2

[

(σrr − σθθ )
2 + (σrr − σzz)

2 + (σθθ − σzz)
2
]1/2

= 1
4
ε

∣
∣
∣�

1
1(z, t)

∣
∣
∣ R(z)2

[

1 − 4
(

r
R(z)

)2

+ 7
(

r
R(z)

)4
]1/2

. (17)

In the pseudo-steady case �0,zz = −4�1
1, so that Eq. 17 becomes

σVM = 1
16

ε
∣
∣�0,zz(z)

∣
∣ R(z)2

[

1 − 4
(

r
R(z)

)2

+ 7
(

r
R(z)

)4
]1/2

= 1
8
ε
∣
∣
(

R′(z)�0,z(z) − β(z)�0(z) − f (�0)
)∣
∣ R(z)

×
[

1 − 4
(

r
R(z)

)2

+ 7
(

r
R(z)

)4
]1/2

. (18)

Remark If we use (3) as the temperature boundary condition, we can obtain an asymptotic solution and
thermal stress by setting f (�0) = 0 in the above equations.

2.2 Stress minimization

We now discuss the main objective of this paper. We will use the analytical formula for the von Mises
stress (18) and set up our optimization problems. Since the von Mises stress depends on the heat-transfer
coefficient hgs (or more precisely β(z)), as well as crystal shape R(z), we will discuss two problems. In the
first approach we use β(z) as a control variable, while keeping the crystal shape R(z) fixed. In the second
problem we use R(z) as a control variable with β(z) fixed.
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2.2.1 Problem I: Optimal β(z)

The original mathematical statement of the problem at hand is

min
β(z)

max
Z0≤S0≤L,0≤z≤S0,0≤r≤R(z)

σVM (r, z; R, S0, β)

subject to constraints, where Z0 and L are the length of the seed and the final length of the crystal, respec-
tively. However, this set-up is not easy to handle numerically. We seek an approximation for this problem
as follows

min
β(z)

[
∫ L

0
σ 2

VM(z)dz + ω1

∫ L

0
(β(z) − β0)

2 dz − ω2

∫ L

0
�2

0,z(z)dz

]

subject to

�0,zz + 2
R

[

R′�0,z − β�0 − f (�0)
] = 0, 0 < z < L, (19a)

�0,z = δ0(�0 − �ch), z = 0, (19b)

�0 = 1, z = L, (19c)
∫ L

0
β(z)dz = β0L, (19d)

β(z) ≥ 0, 0 ≤ z ≤ L, (19e)

where 0 ≤ ωk ≤ 1 are weighting parameters and β0 is a given parameter. The first term of the objective
functional is the L2 version of the original functional. The second term is a penalty term added to avoid
drastic variation in β, which could be impractical to implement. The last term is also a term that penalizes
slow growth, which may also be undesirable from a practical point of view. The integral constraint on β is
for comparison purposes since stress reduction due to a smaller mean heat flux should be considered a real
benefit. Obviously, the heat-transfer coefficient must remain positive from a physical point of view. Here
we have used the pseudo-steady approximation. In this case the von Mises stress becomes

σVM = 1
8
ε
∣
∣R′(z)�0,z(z) − β(z)�0(z) − f (�0)

∣
∣ R(z)

[

1 − 4
(

r
R(z)

)2

+ 7
(

r
R(z)

)4
]1/2

which reaches its maximum when r = R, i.e.,

σVM ≤ 1
4
ε
∣
∣R′(z)�0,z(z) − β(z)�0(z) − f (�0)

∣
∣ R(z).

Thus, our optimization problem can be changed into

min
β(z)

[
∫ L

0

[(

R′(z)�0,z(z) − β(z)�0(z) − f (�0)
)

R(z)
]2 dz + ω1

∫ L

0
(β(z) − β0)

2 dz − ω2

∫ L

0
�2

0,z(z)dz

]

(20)

with the constraints.

2.2.2 Problem II: shape optimization

Similarly we seek an approximation and set up the problem as follows

min
R(z)

[
∫ L

0
σ 2

VM(z)dz + ω1

∫ L

0

(

R′(z) − R′
0
)2 dz − ω2

∫ L

0
�2

0,z(z)dz

]

,

or
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min
R(z)

[
∫ L

0

[(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)

R(z)
]2 dz

+ω1

∫ L

0

(

R′(z) − R′
0
)2 dz − ω2

∫ L

0
�2

0,z(z)dz

]

, (21)

subject to

R�0,zz + 2
(

R′�0,z − β�0 − f (�0)
) = 0, 0 < z < L, (22a)

�0,z = δ0(�0 − �ch), z = 0, (22b)

�0 = 1, z = L, (22c)
∫ L

0
R2(z)dz = L, (22d)

R = R0, z = 0, (22e)

R(z) ≥ R0, 0 ≤ z ≤ L, (22f)

where R0 and R′
0 are given parameters and ωk are penalty parameters. The first and last term in the

objective functional are the same as before. The second term is added to penalize deviation from a conical
shape. From a practical point of view, drastic variation of the crystal shape should be avoided, since it
may reduce the usable amount of the material. In addition, there exists a critical growth angle for some
compound crystals beyond which twinning may happen during growth [20].

3 Derivation of the Euler–Lagrange equations

We now discuss the Euler–Lagrange equations for the two optimization problems using the calculus of
variations.

3.1 Problem I

Since the constraints include the two equality constraints (19a), (19d) and inequality (19e), we use the
method of Lagrange multipliers and the penalty-function method. The augmented Lagrangian objective
function is defined by

J1 =
∫ L

0

[(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)

R(z)
]2 dz

+
∫ L

0
λ(z)

[

�0,zz(z) + 2
R(z)

(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)
]

dz

+ω1

∫ L

0
(β(z) − β0)

2 dz − ω2

∫ L

0
�2

0,z(z)dz

+µ

(

β0L −
∫ L

0
β(z)dz

)

+ ρ

2

∫ L

0
β2(z)H(−β(z))dz, (23)

where λ(z) and µ are Lagrange multipliers, ρ is a penalty parameter which is a sufficiently large positive
number, and H(·) is the Heaviside function.

Using the calculus of variations, we can derive the necessary conditions based on first-order varia-
tions. For the optimization problem given by (23) with constraints (19a–19e), we obtain the following



J Eng Math (2007) 59:1–23 9

Euler–Lagrange equations (see Appendix A for a detailed derivation)

�0,zz + 2
R

[

R′�0,z − β�0 − f (�0)
] = 0, (24a)

∫ L

0
β(z)dz = β0L, (24b)

2R2 (

R′�0,z − β�0
)

�0 + 2λ�0/R − 2ω1 (β − β0) + µ − ρβH(−β) = 0, (24c)

λzz −
(

2R′λ
R

)

z
− 2λβ/R − 2βR2 (

R′�0,z − β�0
)

− 2
(

R2R′ (R′�0,z − β�0
))

z
− 2R2 (

R′�0,z − β�0 − f (�0)
)

f ′(�0)

+ 2R2βf (�0) − 2
(

2RR′2f (�0) + R2R′′f (�0) + R2R′f ′(�0)�0,z

)

− 2λf ′(�0)/R + 2ω2�0,zz = 0. (24d)

The boundary conditions for the above equations are

�0,z = δ0(�0 − �ch), z = 0, (25a)

�0 = 1, z = L, (25b)

λz −
(

δ0 + 2R′

R

)

λ − 2R2R′ [(R′δ0 − β
)

�0 − R′δ0�ch
] − 2R2R′f (�0) = 0, z = 0, (25c)

λ = 0, z = L. (25d)

This is a system of coupled nonlinear second-order ordinary differential equations for the temperature
� and a Lagrange multiplier λ. In general, it has to be solved numerically.

3.2 Problem II

Similarly we use Lagrange multipliers to derive the Euler–Lagrange equations. The augmented Lagrangian
objective function is defined by

J2 =
∫ L

0

[(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)

R(z)
]2 dz

+ω1

∫ L

0

(

R′(z) − R′
0
)2 dz − ω2

∫ L

0
�2

0,z(z)dz

+
∫ L

0
λ(z)

[

R(z)�0,zz(z) + 2
(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)]

dz

+µ

[

L −
∫ L

0
R2(z)dz

]

+ ρ

2

∫ L

0
(R(z) − R0)

2 H(R0 − R(z))dz (26)

where λ(z) and µ are Lagrange multipliers, ρ > 0 is a penalty parameter and H(·) is the Heaviside function.
Using the calculus of variation, we can derive necessary conditions for the optimization problem given

by (26) with the constraints (22a–22f). We obtain the following Euler–Lagrange equations (details in
Appendix B)

R�0,zz + 2
(

R′�0,z − β�0 − f (�0)
) = 0 (27a)

∫ L

0
R2(z)dz = L (27b)
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6RR′2�2
0,z − 12β�0RR′�0,z + 6β2R�2

0 − 2R2R′′�2
0,z + 2β ′R2�0�0,z − 2ω1R′′

+ 2βR2�2
0,z − λ�0,zz − 2λ′�0,z − 2µR + ρ (R − R0) H(R0 − R)

− 4RR′�0,zf (�0) + 6R2f 2(�0) + 8Rβ�0f (�0) + 2R2f ′(�0)�
2
0,z = 0 (27c)

2β2R2�0 + 2R
(

βR�0 − 2RR′�0,z
)

R′′ + 2β ′R2R′�0,z + Rλ′′ − λR′′ − 2βλ

+ 2R2β�0f ′(�0) + 2R2f (�0)f ′(�0) + 4RR′2f (�0) + 2R2R′′f (�0)

+ 2R2βf (�0) − 2λf ′(�0) + 2ω2�0,zz = 0. (27d)

The boundary conditions are

�0,z = δ0(�0 − �ch), z = 0, (28a)

�0 = 1, z = L, (28b)
(

λ

R

)′
+ 2R′ [β�0 − δ0R′ (�0 − �ch)

] + 2ωδ0 (�0 − �ch)

+ 2R2R′f (�0) = 0, z = 0, (28c)

λ = 0, z = L, (28d)

R = R0, z = 0, (28e)

2R2 (

Rz�0,z − β
)

�0,z + 2λ�0,z + 2ω1
(

R′ − R′
0
) − R2f (�0)�0,z = 0, z = L. (28f)

3.3 Numerical implementation

The system of equations (24a–24d) with boundary conditions (25a–25d) and Eqs. 27a–27d with boundary
conditions (28a–28f) are nonlinear and coupled. In order to solve them, we use a finite-difference method
to discretize the differential equations and use a trapezoidal rule for the integrals. The discrete system is
also a nonlinear system and is solved using MATLAB. MATLAB uses a Gauss–Newton method and a
trust-region dogleg method to solve the nonlinear systems of equations. The Gauss–Newton method uses
a nonlinear least-squares solver which employs a line-search procedure and a quasi-Newton method to
solve the equations. Newton’s method is used in a trust-region dogleg method to find the search direction.

4 Results

Two sets of computations are carried out, one corresponding to temperature boundary condition (3) and
the other with temperature boundary condition (2). Using the optimality system of Eqs. 24a–24d with
boundary conditions (25a–25d), we can find the optimal heat-transfer coefficient hgs for given crystal
shapes. The optimal crystal shape is obtained using Eqs. 27a–27d with boundary conditions (28a–28f). The
zero-order temperature and von Mises stress are computed using Eqs. 14a–15 and (18). A typical set of
parameters used in our computations is listed in Table 1. For all computations, we assume that the top of
the crystal is insulated from the chuck (δ0 = 0) and the mean heat-transfer coefficient is hgs = 4 W/m2K.

4.1 Combined convective and radiative heat transfers

We assume that a desirable crystal shape can be produced by adjusting the pulling rate; the non-dimensional
heat flux of the melt is γ = −0.1. A negative γ means that the melt region near the crystal/melt interface
is a supercooled region. This γ can be obtained through controlling the melt flow. The assumption of a
constant heat flux from the melt is based on an observation of the manufacturing process for InSb using
the Cz method [7]. It has been observed that the bottom of the crystals is almost flat (except at the triple
point) and the power supply stays stable (indicating a steady heat flux).
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Table 1 A summary of
parameters for InSb
growth

Name Symbol Value

Ambient gas temperature Tg 600 K
Melting temperature Tm 798.4 K
Solid density ρs 5.64 × 103 kg/m3

Liquid density ρl 6.47 × 103 kg/m3

Thermal conductivity ks 4.57 W/m K
Heat capacity ρscs 1.5 × 106 J/m3 K
Surface-tension coefficient σ 0.434 J/m2

Latent heat of fusion Lh 2.3 × 105 J/kg
Mean crystal radius R̄ 0.03 m
Crucible radius Rc 0.1 m
Equilibrium growth angle θc 25◦

Before we present our main results, we will discuss briefly the case of cylindrical crystals in Sect. 4.1.1.
The main purpose is to show that our procedure produces consistent results compared to the ones reported
in the literature for silicon [4]. As noted earlier, it is extremely difficult to grow InSb crystals of cylindrical
shape [7] and it has been shown in our previous paper [5] that stress levels are much higher in cylindrical
crystals than that in conic ones. Therefore, we will focus our discussions on conic crystals in Sect. 4.1.2
before discussing shape optimization in Sect. 4.1.3.

4.1.1 Optimal β for cylindrical crystals

Although in this paper our main focus is on InSb crystals, our model is also applicable to other crystals.
We start by applying our procedure to cylindrical silicon crystals so that a qualitative comparison can be
made with the results obtained in [4]. Our computations are carried out by using the following parameter
values. Density of the silicon crystal = 2420 kg/m3; heat capacities = 1000 J/kg K; thermal conductivities
ks = 22 W/m K; Poisson’s ratio = 0.25; crystal radius = 0.1 m; melting temperature = 1683 K; Tg = 600 K;
surface-tension coefficient = 0.72 J/m2; latent heat of fusion = 1.8×106 J/kg; specific heat cs = 1000 J/kg K;
mean heat-transfer coefficient hgs = 8 W/m3 K and length of crystal = 0.6 m.

Figure 3(a) shows the profiles for optimal and constant hgs. The following parameters are used to find
the optimal solution: ρ = 60; ω1 = 0.2; ω2 = 0.3; β0 = 1.0. Figure 3(b) shows the nondimensional tem-
perature along the lateral surface at the end of growth. The history of the non-dimensional maximum von
Mises stress corresponding to the optimal and constant heat-transfer coefficient hgs is shown in Fig. 3(c).
Figure 3(d) shows the non-dimensional von Mises stress along the lateral surface at the end of growth.

The results show that the stress level can be reduced by almost 50%, when the heat-transfer coefficient
profile is optimized. The results also show that for the optimal case, the lateral temperature variation
is smaller near the crystal/melt interface, which is consistent with the solution in [4] when the surface
temperature itself is used as a control variable in the optimization process.

For an InSb crystal we assume that the mean radius of the crystal is 0.03 m. Figure 4(a) shows the
corresponding optimal heat-transfer coefficient. The following parameters are used to find the optimal
solution: ρ = 60; ω1 = 0.2; ω2 = 0.3; β0 = 1.0. Figure 4(b) shows the non-dimensional temperature along
the lateral surface at the end of growth. The history of the maximum von Mises stress corresponding to
the optimal and constant heat-transfer coefficient hgs is given in Fig. 4(c). Figure 4(d) shows the von Mises
stress along the lateral surface at the end of growth. From Fig. 4(c) it can be seen that the thermal stress
can be greatly reduced, similar to the results for silicon crystals.
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Fig. 3 (a) The optimal and constant heat-transfer coefficient hgs for a silicon crystal. (b) The temperature along the lateral
surface at the end of growth. (c) The history of non-dimensional maximum von Mises stress corresponding to the optimal and
constant heat-transfer coefficient hgs. (d) The non-dimensional von Mises stress along the lateral surface at the end of growth

4.1.2 Optimal β for conical crystals

The following results are for a conical crystal that is 33.5 cm long and 6 cm in diameter (largest), so that
the mean radius is comparable to the cylindrical one of the previous section. We assume that β0 = 1.
To begin, we present some numerical results for three heat-transfer coefficients: constant, optimal, and
experimental heat-transfer coefficient hgs(z). The experimental heat-transfer coefficient was estimated and
communicated to us by the engineers we have been working with [7]. The optimal heat-transfer coefficient
is calculated when ω1 = 0, ω2 = 0.3, and ρ = 20. In Fig. 5 we plotted the shape of β (or hgs) used for
comparison: constant, one fitted from experimental data and the optimal function (obtained by solving the
Euler–Lagrange equations derived in the previous section).

In Fig. 6(a) the maximum von Mises stress during growth is plotted. The parameters for the optimization
problem are ρ = 20, ω1 = 0 and ω2 = 0.3. The stress at the end of growth is plotted in Fig. 6(b). It can be
seen that the reduction of the stress using the optimal hgs is quite dramatic.

Next we investigate the effect of the parameters in the optimization setup on the solutions. For the
penalty parameter ρ, we find that the optimization problem converges to same solution when ρ ≥ 20 for
given ω1 and ω2 values. Figure 7(a) shows two optimal solutions of hgs for ω2 = 0 and ω2 = 0.4 when ω1 = 0
and ρ = 20. Figure 7(b) shows the maximum von Mises stress during growth for these two cases. We found
that the von Mises stress with ω2 = 0 is slightly lower than that for the ω2 = 0.4 case. Since the penalty
associated with ω2 determines the growth speed, the gain on stress reduction is at the expense of a longer
growth time. For example, the growth time for ω2 = 0 (33.47 h) is longer than that for ω2 = 0.3 (30.68 h).
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Fig. 4 (a) The optimal and constant heat-transfer coefficient hgs for an InSb crystal. (b) The temperature along the lateral
surface at the end of growth. (c) The history of maximum von Mises stress corresponding to the optimal and constant
heat-transfer coefficient hgs. (d) The von Mises stress along the lateral surface at the end of growth

Fig. 5 The three
heat-transfer coefficients
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In order to investigate the robustness of the optimal solution, we present a set of calculations correspond-
ing to a perturbation of the heat flux from the melt γ . We used the same optimal heat-transfer coefficient
shown in Fig. 5 and computed the maximum von Mises stress σmax corresponding to γ = −0.1, γ = −0.09



14 J Eng Math (2007) 59:1–23

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

S(cm)

M
ax

im
um

 S
tr

es
s(

M
P

a)

Optimal hgs
Constant hgs=4

Experimental hgs

Optimal hgs
Constant hgs=4

Experimental hgs

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

z(cm)

vo
n 

M
is

es
 S

tr
es

s 
(M

P
a)

(a) (b)

Fig. 6 (a) Maximum von Mises stress during the growth. (b) von Mises stress along the crystal lateral surface at the end of
the growth. For the optimal heat-transfer coefficient the following parameters are used: ρ = 20, ω1 = 0 and ω2 = 0.3
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Fig. 7 (a) Optimal heat-transfer coefficients; (b) Maximum von Mises stress during growth for the parameters values ω2 = 0
and ω2 = 0.4, respectively. The other parameter values are ω1 = 0 and ρ = 20

Fig. 8 The ratio of the
fluctuation of the history
of the maximum von
Mises stress with an
increase of 10% of the
heat flux from −0.1 and a
decrease of 10% of the
heat flux from −0.1. The
optimal shape used for
the calculations is
presented in Fig. 5
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and γ = −0.11, denoted by σ−0.09
max , σ−0.1

max , σ−0.11
max , respectively. We define the ratio of the fluctuations as

Rdec = σ−0.11
max − σ−0.1

max

σ−0.1
max

, Rinc = σ−0.09
max − σ−0.1

max

σ−0.1
max

.

From Fig. 8, it can be seen that the ratio of the fluctuation is less than 0.6% for a 10% deviation of the heat
flux, which is small compared to the reduction of the stress by using the optimal hgs.

Finally, we note that, while the optimization process works well in reducing the stress level, it is also
evident that, in general, the stress level is much lower in a conic crystal than in a cylindrical one of similar
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size, regardless of the optimization process. In the following we explore the possibility of further reducing
thermal stress by shape optimization.

4.1.3 Optimal shape

The following calculations are for a crystal with a length of 33.5 cm and a seed crystal radius of R0 = 0.5 cm.
The mean crystal radius is R̄ = 0.03 m. We fix the slope of the crystal shape around tan 15◦. The parameters
used for the optimization are ρ = 20, ω1 = 0.1, and ω2 = 0.5.

Figure 9(a) shows the linear hgs used for the computation. Figure 9(b) is the optimal shape obtained
by solving the Euler–Lagrange equations and a conical shape. Figure 9(c) shows the maximum von Mises
stress corresponding to the optimal shape and the conical shape, respectively. Figure 9(d) shows the angle
of the crystal shape in the (z, r) coordinate system corresponding to the optimal shape. We can see that the
reduction in thermal stress is significant, while the slope of the crystal shape remains smooth with a slight
increase of growth angle.

For the next set of computations we used an optimal hgs obtained for a conical crystal. Figure 10(a)
shows the shape of the optimal hgs. Figure 10(b) shows the optimal shape obtained using ρ = 20, ω1 = 0.1,
and ω2 = 0.5 with the conical shape. Figure 10(c) shows the maximum von Mises stress corresponding to
the optimal shape and the conical shape, respectively. Figure 10(d) shows the angle of the optimal crystal
shape in the (z, r) coordinate system. In this case, the reduction of the stress is not as significant, which
shows that hgs is nearly optimal, even though it is obtained with a given conical shape.
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Fig. 9 (a) The given linear hgs. (b) The optimal shape corresponding to the given hgs when ρ = 20, ω1 = 0.1, and ω2 = 0.5
and a conical shape. (c) The history of the maximum von Mises stress corresponding to the optimal shape and the conical
shape. (d) The degree of the crystal profile in the (z, r) coordinate system for the optimal shape
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Fig. 10 (a) The given optimal hgs. (b) The optimal shape corresponding to the given hgs when ρ = 20, ω1 = 0.1, and ω2 = 0.5
and a conical shape. (c) The history of the maximum von Mises stress corresponding to the optimal shape and the conical
shape. (d) The degree of the crystal profile in the (z, r) coordinate system for the optimal shape

We also carried our parameter studies and found that nearly the same solution is obtained for ρ ≥ 15;
R′

0 = tan 15◦/
√

ε and R′
0 = tan 6◦/

√
ε. Figure 11 shows the effect of the parameter ω1 on the optimal

solution. The linear profile of hgs is shown in Fig. 11(a). Figure 11(b) shows the optimal shape affected
by parameter ω1. Figure 11(c) shows the effect on the maximum von Mises stress. Figure 11(d) shows the
angle of the crystal shape in the (z, r) coordinate system affected by ω1. In general, the effect of ω1 is small.

In order to study the robustness of our optimal solution, we use the optimal shape calculated using the
given linear heat-transfer coefficient (Fig. 9) for the calculations. We assume the perturbation of the heat
flux γ is 10% and use the same notation as in Sect. 4.1.2. Figure 12 shows that the fluctuation in stress is
less than 0.07%.

Remark We have shown that significant stress reduction can be achieved by optimizing either the heat-
transfer coefficient or the crystal shape. This is due to the fact that there are two contributing factors in the
thermal stress, as shown in (18). By taking advantage of the inter-play of these two contributing factors, we
can search for the best conditions for these two components to cancel out. To show this, we have plotted
the components of the stress. Figure 13(a) shows the R′�0,z component and the β�0 component of the
von Mises stress σVM and the combination of the two components along the crystal profile at the end of
growth of the crystal for the conical crystal shape. Figure 13(b) shows the R′�0,z component and the β�0
component of the von Mises stress σVM and the combination of the two components along the crystal profile
at the end of growth of the crystal for the optimal crystal shape. The heat-transfer coefficient used for the
calculations is assumed to be linear.
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Fig. 11 (a) The given linear hgs. (b) The two optimal crystal shapes for ω1 = 0.0 and ω1 = 1.0. (c) The history of the maximum
von Mises stress during the growth of the crystal for ω1 = 0.0, ω1 = 1.0 hen ρ = 20, R′

0 = tan 15◦/
√

ε, and ω2 = 0.1 and
conical shape. (d) The degree of the crystal profile in the (z, r) coordinate system for ω1 = 0.0 and ω1 = 1.0

Fig. 12 The ratio of the
fluctuation of the history
of the maximum von
Mises stress with an
increase of 10% of the
heat flux from −0.1 and a
decrease of 10% of the
heat flux from −0.1. The
optimal shape used for
the calculations is
presented in Fig. 9
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4.2 Effect of radiative transfer

We now treat the radiative heat transfer separately from the convective heat transfer. We assume that only
the convective heat-transfer coefficient can be optimized. The numerical results presented in this section
are obtained using the radiation model (2). We assume that a desirable crystal shape can be produced by
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Fig. 13 (a) R′�0,z component and β�0 component of the von Mises stress σVM and the combination of the two components
along the crystal profile at the end of growth of the crystal for the conical crystal shape. (b) R′�0,z component and β�0
component of the von Mises stress σVM and the combination of the two components along the crystal profile at the end of
growth of the crystal for the optimal crystal shape when R′

0 = tan 15◦/
√

ε, ρ = 20, ω1 = 0.5, and ω2 = 0.2
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Fig. 14 (a) Three heat-transfer coefficients; (b) Maximum von Mises stress during the growth. For the optimal hgs we used
the following parameters: ρ = 20; ω1 = 0.3; ω2 = 0.2; β0 = 1.0

adjusting the heat flux of the melt with a given pull rate of 2.2 cm/h and the radiative transfer coefficient is
rc = 5.24 × 10−9 W/(m2 K2).

4.2.1 Optimal β

For a given conical crystal shape we assume the radius of the seed crystal is R0 = 0.5 cm, the length and
the maximum radius of the crystal at the end of growth are 33.5 cm and Rmax = 5.7 cm, respectively. The
following parameters are used for all optimization calculations: ρ = 20; ω2 = 0.2; β0 = 1.0.

Figure 14(a) shows the shape of three heat-transfer coefficients. We used ω1 = 0.3 for the optimization
problem. Figure 14(b) shows the maximum von Mises stress during the growth of the crystal for these three
hgs. Again, the reduction of the thermal stress using the optimal hgs is significant.

We also performed parameter studies and found that different parameter values produce the same
solution when ρ is greater than critical values. Robustness tests also yield similar results as before.

4.2.2 Optimal shape

We present the following optimal solutions for the given heat-transfer coefficients hgs. For all the calcu-
lations we assume that the crystal length is 33.5 cm, the radius of the seed crystal is R0 = 0.005 m, and
the mean crystal radius is R = 0.03 m. We assume the slope of the crystal profile is around tan 10◦. The
parameters used for the optimization are ρ = 20 and ω2 = 0.6.
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Fig. 15 (a) The given linear hgs. (b) A given conical shape and the optimal shape. The parameters used for finding the optimal
shape are as follows: ω1 = 0.2, ω2 = 0.6, ρ = 20, and R′

0 = tan 10◦/
√

ε. (c) The maximum von Mises stress for the two shapes.
(d) The degree of the crystal profile in the (z, r) coordinate system for the optimal shape

Figure 15(a) shows the heat-transfer coefficient used for finding the optimal shape. Figure 15(b) shows a
given conic shape and the optimal shape. The parameters used for finding the optimal shape are as follows:
ω1 = 0.2, ω2 = 0.6, ρ = 20, and R′

0 = tan 10◦/
√

ε. Figure 15(c) compares the maximum von Mises stress
and the stress at the final length for the two shapes. Reduction in thermal stress is again apparent when
the optimal shape is used.

We have carried out a parameter study, a sensitivity analysis (robustness) and computed combined β

and shape optimizations. The numerical results are similar to those obtained earlier for the combined
convective–radiative heat-transfer case. It suggest that our optimization procedure is relatively robust.
Even when part of the heat transfer (radiative) can not be optimized, the procedure we used seems to be
able to find the suitable crystal shape which can reduce the stress significantly.

5 Conclusions

One of the main concerns of using the Czochralski technique to grow single compound crystals is the
difficulty of controlling the appearance of crystalline defects. In practice, one has to find a suitable thermal
environment and “magic shapes” (defined by the axial variation of the lateral surface) by trial-and-error
so that defect-free crystals can be grown. The “shape effect” is not a serious issue for more commonly
used single-material crystals such as silicon where cylindrical crystals are routinely grown. For compound
crystals, however, it is extremely difficult to grow defect-free crystals of cylindrical shape due to their
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low resistance to resolve stress. As a result, shape control become a critical issue in practice [6, 7]. The
combination of shape and thermal effects on defect distribution is not easy to manipulate and the control
process is more delicate.

The shape effect was demonstrated in [5] where an explicit formula for the von Mises stress was derived.
The thermal-stress level is determined by heat flux through the lateral surface and the shape variation of the
lateral surface. When the growth condition is not optimized, these two components both contribute to the
overall stress. On the other hand, if the growth process is controlled carefully, it is possible to find optimal
conditions so that these two components cancel out. However, finding the most favorable conditions to
balance these two components is not trivial.

By setting up a constrained-optimization problem within the framework of optimal control, we are
able to approach the stress-reduction problem systematically. An optimal-control methodology provides
a valuable tool and has been used previous in the crystal-growth literature. However, most of the pre-
vious studies assumed a simple cylindrical geometry for the crystal which is appropriate for growing
silicon and other common single crystals. In this paper, we have discussed both the thermal and shape
effects. By using an semi-analytical solution for the thermal stress, the optimization process is more
efficient than a full numerical simulation. We are able to show that stress can be reduced significantly by
choosing a suitable thermal environment (lateral heat flux) or by growing the crystal into an optimal shape.

In order to keep our problem mathematically manageable, we have made several simplifications. As a
consequence, direct application of our results may not be suitable for a complicated growth procedure.
Verification of our model is necessary and work is currently underway to incorporate the effect of melt flow.
Nevertheless, the results reported provide useful insights and can be used as a general guide, especially
when the melt flow can be controlled using various techniques such as the electromagnetic field.
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Appendix A: Euler–Lagrange equations for optimization problem I

Using the calculus of variations, we derive the first-order necessary conditions for the optimization problem
given by Eq. 23 with the constraints (19a–19e).

Taking the first variation of (23) and using product rule yields

δJ1 = δ

∫ L

0

[(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)

R(z)
]2 dz

+δ

∫ L

0
λ(z)

[

�0,zz(z) + 2
R(z)

(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)
]

dz

+ω1δ

∫ L

0
(β(z) − β0)

2 dz − ω2δ

∫ L

0
�2

0,z(z)dz + δ

[

µ

(

β0L −
∫ L

0
β(z)dz

)]

+ρ

2
δ

∫ L

0
β2(z)H(−β(z))dz

=
∫ L

0
2R2(z)

[

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
]

× [

R′(z)δ�0,z(z) − β(z)δ�0(z) − �0(z)δβ(z) − f ′(�0(z))δ�0(z)
]

dz

+
∫ L

0
δλ(z)

[

�0,zz(z) + 2
R(z)

(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)
]

dz
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+
∫ L

0
λ(z)

[

δ�0,zz(z) + 2
R(z)

(

R′(z)δ�0,z(z) − δβ(z)�0(z) − β(z)δ�0(z) − f ′(�0(z))δ�0(z)
)
]

dz

+2ω1

∫ L

0
(β(z) − β0) δβ(z)dz − 2ω2

∫ L

0
�0,z(z)δ�0,z(z)dz

+δµ

(

β0L −
∫ L

0
β(z)dz

)

− µ

∫ L

0
δβ(z)dz + ρ

∫ L

0
β(z)δβ(z)H(−β(z))dz

Using integration by parts for the above expression and the boundary conditions for �0, we obtain the
following after simplifying:

δJ1 =
∫ L

0

[

λzz −
(

2R′λ
R

)

z
− 2λβ/R − 2βR2 (

R′�0,z − β�0
)

−2
(

R2R′ (R′�0,z − β�0
))

z
− 2R2 (

R′�0,z − β�0 − f (�0)
)

f ′(�0)

+2R2βf (�0) − 2
(

2RR′2f (�0) + R2R′′f (�0) + R2R′f ′(�0)�0,z

)

−2λf ′(�0)/R + 2ω2�0,zz

]

δ�0dz

+
∫ L

0

[

�0,zz + 2
R

(

R′�0,z − β�0 − f (�0)
)
]

δλ(z)dz

−
∫ L

0

[

2R2 (

R′�0,z − β�0
)

�0 + 2λ�0/R − 2ω1 (β − β0) + µ − ρβH(−β)
]

δβdz

+δµ

(

β0L −
∫ L

0
β(z)dz

)

+ 2R′λ
R

δ�0,z(L)

+
[

λz −
(

δ0 + 2R′

R

)

λ − 2R2R′ [(R′δ0 − β
)

�0 − R′δ0�ch
] − 2R2R′f (�0)

]

δ�0(0)

Since �0(z), β(z), λ(z) and µ are arbitrary, the optimality conditions are obtained by setting the coefficients
of δ�0(z), δβ(z), δλ(z) and δµ equal to zero. The resultant conditions stated are exactly the Euler–Lagrange
equations and the boundary conditions given in (24d–25d).

Appendix B: Euler–Lagrange equations for optimization problem II

We derive the first-order necessary conditions for the optimization problem given by Eq. 26 with the
constraints (22a–22f) using the calculus of variations.

Taking the first variation of (26) and using the product rule yields

δJ2 = δ

∫ L

0

[(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)

R(z)
]2 dz

+ω1δ

∫ L

0

(

R′(z) − R′
0
)2 dz − ω2δ

∫ L

0
�2

0,z(z)dz

+δ

∫ L

0
λ(z)

[

R(z)�0,zz(z) + 2
(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)]

dz

+δ

[

µ

(

L −
∫ L

0
R2(z)dz

)]

+ ρ

2
δ

∫ L

0
(R(z) − R0)

2 H(R0 − R(z))dz

=
∫ L

0
2
[(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)

R(z)
]
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[(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)

δR(z)

+ (

δR′(z)�0,z(z) + R′(z)δ�0,z(z) − β(z)δ�0(z)
)

R(z)
]

dz

+2ω1

∫ L

0

(

R′(z) − R′
0
)

δR′(z)dz − ω2

∫ L

0
2�0,z(z)δ�0,z(z)dz

+
∫ L

0
δλ(z)

[

R(z)�0,zz(z) + 2
(

R′(z)�0,z(z) − β(z)�0(z) − f (�0(z))
)]

dz

+
∫ L

0
λ(z)

[

δR(z)�0,zz(z) + R(z)δ�0,zz(z)

+2
(

δR′(z)�0,z(z) + R′(z)δ�0,z(z) − β(z)δ�0(z) − f ′(�0(z))δ�0(z)
)]

dz

+δµ

(

L −
∫ L

0
R2(z)dz

)

− µ

∫ L

0
2R(z)δR(z)dz

+ρ

∫ L

0
(R(z) − R0) H(R0 − R(z))δR(z)dz

Using integration by parts for the above expression and the boundary conditions for �0(z) and R(z), we
obtain the following after simplifying:

δJ2 =
∫ L

0

[

R�0,zz + 2
(

R′�0,z − β�0 − f (�0)
)]

δλdz

+
∫ L

0

[

2β2R2�0 + 2R
(

βR�0 − 2RR′�0,z
)

R′′ + 2β ′R2R′�0,z + Rλ′′ − λR′′ − 2βλ

+ 2R2β�0f ′(�0) + 2R2f (�0)f ′(�0) + 4RR′2f (�0) + 2R2R′′f (�0)

+ 2R2βf (�0) − 2λf ′(�0) + 2ω2�0,zz

]

δ�0dz

+
∫ L

0

[

6RR′2�2
0,z − 12β�0RR′�0,z + 6β2R�2

0 − 2R2R′′�2
0,z + 2β ′R2�0�0,z − 2ω1R′′

+2βR2�2
0,z − λ�0,zz − 2λ′�0,z − 2µR + ρ (R − R0) H(R0 − R)

−4RR′�0,zf (�0) + 6R2f 2(�0) + 8Rβ�0f (�0) + 2R2f ′(�0)�
2
0,z

]

δRdz

+ δµ

(

L −
∫ L

0
R2(z)dz

)

+ λRδ�0,z(L)

+
{

λ′R − λR′ + 2R2R′ [β�0 − δ0R′ (�0 − �ch)
]

+2ωδ0 (�0 − �ch) + 2R2R′f (�0)
}

δ�0(0)

+
[

2R2 (

Rz�0,z − β
)

�0,z + 2λ�0,z + 2ω1
(

R′ − R′
0
) − R2f (�0)�0,z

]

δR(L)

Since �0(z), R(z), λ(z) and µ are arbitrary, the optimality conditions are obtained by setting the coefficients
of δ�0(z), δR(z), δλ(z) and δµ equal to zero. The resultant conditions stated are exactly the Euler–Lagrange
equations and the boundary conditions given in (27a–28f).
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